
1. Introduction
One of the biggest questions motivating the exploration of Mars is whether the planet supports or ever supported 
life, and it is for this reason that the potential link between methane occurrence and microbial life has garnered 
exceptional interest. Although there have been numerous reports of methane in Mars' atmosphere (Formisano 
et al., 2004; Giuranna et al., 2019; Krasnopolsky et al., 2004; Moores, King et al., 2019; Mumma et al., 2009), 
there is an ongoing debate about the occurrence of methane and the validity of such detections (Korablev 
et al., 2019; Villanueva et al., 2013; Webster et al., 2015; Zahnle et al., 2011). Currently, both the source of the 
methane and mechanism for its transmission to the atmosphere remain unknown. Seasonal variability in detected 
atmospheric methane abundance (Giuranna et al., 2019; Roos-Serote et al., 2016; Webster et al., 2018) coupled 
with the fact that methane has a relatively short lifetime in the martian atmosphere (Lefèvre & Forget, 2009) 
points toward active methane sources in the martian subsurface (Figure 1).

Most previous computational studies of subsurface methane transport on Mars have not explicitly considered 
rapid transport mechanisms such as advection, instead favoring diffusion (Moores, King et al., 2019; Stevens 
et al., 2015; Temel et al., 2019), which is much slower and only capable of transporting significant quantities of 
methane from relatively shallow depths. Most previous numerical studies of methane release from the martian 

Abstract Both the source of methane on Mars and the mechanism for transmission from the subsurface 
to the atmosphere are not fully understood. Previous seepage simulations have invoked relatively shallow 
subsurface sources to explain observed methane signatures on Mars. We propose that barometric-pressure 
pumping through fracture networks could be an effective mechanism for methane transport from the deep 
subsurface on Mars. Using atmospheric pressure data gathered by Curiosity as input, we simulate methane 
gas transport from depths of 200 m to the surface. Even with such a deep source, our model reproduces the 
observed seasonality of methane, and the simulated surface methane fluxes fall within the range of previous 
estimates derived from atmospheric observations. Because 200 m is the likely minimum hospitable depth for 
living methanogenic microbes, our fracture network model indirectly reinvigorates the possibility of a microbial 
source of methane on Mars.

Plain Language Summary The existence of methane on Mars is a topic of significant interest 
because of its potential association with subsurface microbial life. Measurements of methane in the atmosphere 
of Mars indicate that its abundance fluctuates over time. Although the source of methane is unknown, it most 
likely comes from below the surface of Mars; however, the range of depths of potential methane sources is not 
well constrained. If methane is currently being produced by living microbes, it would have to be at depths of at 
least 200 m in order to support life. Nearly all prior modeling work in this area has considered relatively slow, 
inefficient methane transport mechanisms, which limits the methane sources to the shallow martian subsurface. 
In this paper, we describe and model a mechanism capable of transporting significant quantities of methane 
to the atmosphere from depths capable of supporting living methane-producing microorganisms. We also find 
that the methane seepage pattern generated by our model is highly seasonal, and closely follows the pattern of 
atmospheric methane concentrations measured by the Curiosity rover.
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seepage from potentially habitable 
depths (up to 200 m)

•  Modeled surface methane seepage 
patterns are highly seasonal and 
coincide with rover measurements of 
elevated concentrations at Gale crater

•  Magnitude and timing of modeled 
surface flux is comparable to existing 
plume estimates, supporting a model 
of localized surface releases
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subsurface have therefore focused on relatively shallow sources (∼10–30 m depth) in order to explain short-term 
variations in atmospheric abundance, or else require relatively fast-acting destruction processes such as biological 
oxidation (Stevens et al., 2017). Such conclusions emphasizing shallow sources have implicitly ruled out extant 
methanogens because the depths habitable for martian microbes are estimated to be at least 200 m (Section 1 in 
Supporting Information S1).

Recent work by Viúdez-Moreiras et al.  (2020) did examine advective fluxes caused by transient atmospheric 
pressure fluctuations, but the analysis emphasized relatively shallow methane sources (<10 m). That research 
was the first to evaluate the relevance of advective fluxes of methane to Mars' atmosphere, concluding that baro-
metric pumping—an advective transport mechanism driven by atmospheric pressure fluctuations—could not 
significantly enhance regolith emissions past the first few meters of depth. However, the subsurface in that model 
was represented as a porous medium rather than a fractured porous medium. Fractures are critical to the transport 
of subsurface gases because they provide conduits through rock via well-connected high-permeability pathways 
(Buckingham, 1904; Nilson et al., 1991) with apertures (i.e., width of opening) much larger than pore diameters 
in porous rock, and should therefore be explicitly accounted for in advective gas transport models.

Evidence suggests that the martian subsurface is heavily fractured, with many fractures and faults believed 
to extend to depths >1 km (De Toffoli et al., 2018; Kronyak et al., 2019; Oehler & Etiope, 2017; Rodríguez 
et al., 2005). Recent InSight data indicate that Mars' crustal density is substantially less than expected, suggesting 
high average porosity and extensive fracturing (Knapmeyer-Endrun et al., 2021; Lognonné et al., 2020). Further-
more, the lower gravitational force on Mars (∼0.37gEarth) leads to lower lithostatic pressures than on Earth, which 
will result in higher fracture density and larger apertures at any depth (Heap et al., 2017), in turn leading to more 
efficient advective transport (Section 4.3 in Supporting Information S1).

On Earth, transport of deeply-sourced gases to the atmosphere can be greatly enhanced by barometric pump-
ing. This mechanism has been studied extensively in terrestrial applications, such as: CO2 leakage from carbon 
sequestration sites (Carroll et al., 2014; Dempsey et al., 2014; Pan et al., 2011; H. S. Viswanathan et al., 2008) and 
deep geological stores (Etiope & Martinelli, 2002; Rey et al., 2014), methane leakage from hydraulic fracturing 
operations (Myers, 2012), radon gas entry into buildings (Tsang & Narasimhan, 1992), contaminant monitoring 
(Stauffer et al., 2018, 2019), and radionuclide gas seepage from underground nuclear explosions and waste stor-
age facilities (Bourret et al., 2019, 2020; Carrigan et al., 1996, 1997; Harp et al., 2020; Jordan et al., 2014, 2015; 
Sun & Carrigan, 2014). Barometric highs in Earth's atmosphere push gases deeper into fractured rock, while 
barometric lows pull gases upward (Auer et al., 1996; Harp et al., 2018; Neeper, 2002, 2003). Because some 
of the gas molecules pulled upward subsequently diffuse from the fractures into the surrounding, relatively 
low-permeability rock matrix—in which the barometric pressure fluctuations do not propagate efficiently—a 
certain portion are not pushed back into the deeper subsurface during barometric highs. These molecules can 
diffuse back into the fracture and be available for upward transport during subsequent barometric lows. Over 
multiple cycles of atmospheric pressure variations, this fracture-matrix exchange produces a ratcheting mecha-
nism that greatly enhances upward gas transport (Massmann & Farrier, 1992; Neeper & Stauffer, 2012a; Nilson 
et al., 1991; Takle et al., 2004). Etiope and Oehler (2019) proposed that barometric pumping could be an effective 
transport mechanism for methane on Mars.

In this paper, we demonstrate the viability of the barometric-pumping transport mechanism for bringing deeply 
sourced methane to Mars' atmosphere based on a fractured rock representation of the martian subsurface. We 
present a model of subsurface flow and transport in fractured rock driven by measured martian atmospheric 
pressure fluctuations. To our knowledge, this is the first study to use fractured-rock flow and transport models 
to interrogate martian methane seepage. Our simulations confirm the ability of martian barometric fluctuations 
to promote surface seepage of significant quantities of methane from depths of up to 200 m, potentially reinvig-
orating support for the hypothesis that geologically deep, biogenically-produced methane could be the source of 
atmospheric methane on Mars. Our model also produces surface methane flux patterns consistent with season-
ality in methane abundance observed at Gale crater. Combining the results of this modeling with current and 
future observations of trace gas release will allow us to draw links between active processes in the martian crust 
and gases detected in the atmosphere. By improving our understanding of methane transport mechanisms on 
Mars and their role in producing the observed methane episodicity, this work will facilitate evaluation of optimal 
targets and timing for both atmospheric detection (e.g., Curiosity) and shallow subsurface (e.g., Perseverance) 
isotopic fingerprinting upon eventual sample retrieval.

Writing – original draft: J. P. Ortiz, H. 
Rajaram
Writing – review & editing: J. P. Ortiz, 
H. Rajaram, P. H. Stauffer, D. R. Harp, R. 
C. Wiens, K. W. Lewis



Geophysical Research Letters

ORTIZ ET AL.

10.1029/2022GL098946

3 of 11

2. Methods: Fractured Rock Flow and Transport Simulations
We used the fractured-rock flow and transport simulations to (a) evaluate the ability of barometric pressure 
fluctuations on Mars to drive methane transport from depths capable of supporting living microbes (200 m), 
(b) generate surface flux patterns mirroring the observed seasonality of atmospheric methane abundance, and 
(c) test the sensitivity of surface methane fluxes to subsurface properties (Table 1). Flow and transport equa-
tions in the fractures are coupled to transport equations in the rock matrix to simulate the overall behavior of 
gases in fractured rock. These approaches are standard in subsurface hydrogeology—the governing equations 
and computational approach are described in detail in Section 3 in Supporting Information S1. Calculations are 
performed within the Finite-Element Heat and Mass (FEHM) simulator, a well-tested multiphase code (Zyvoloski 
et al., 1999, 2017, 2021). FEHM has been used extensively in terrestrial barometric pumping studies (Bourret 
et al., 2019, 2020; Jordan et al., 2014, 2015; Neeper & Stauffer, 2012a, 2012b; Stauffer et al., 2019). We have 
made a simplifying assumption that there is no water in the domain, which would reduce available air-filled 
porosity (as ice) and cause temporary immobile storage due to phase partitioning (as liquid). Gravity and air 
properties are modified for this study to replicate Mars conditions.

2.1. Boundary Conditions

The simulations are run under isothermal conditions using Mars air (∼95% 
CO2) and methane properties consistent with the mean surface temperature 
at Gale crater (−50°C). The bottom of the domain is a no-flux boundary, 
representing an impermeable bedrock or ice layer at depth. The left and right 
lateral boundaries are no-flux boundaries. The top boundary is forced by the 
barometric pressure record collected by the Curiosity Mars Science Labo-
ratory Rover Environmental Monitoring Station (MSL-REMS; https://pds.
nasa.gov/).

Vapor-phase methane and martian air are allowed to escape the domain 
from the top boundary. We prescribed a continuous methane production rate 
(9.6 × 10 −7 mg CH4 m −3 sol −1) within a 5-m-thick zone at the bottom span-
ning the lateral extent of the domain (Figure 2). This rate is consistent with 
measurements of methanogenic microbes at depth in Mars-analog terrestrial 
settings (Colwell et al., 2008; Onstott et al., 2006). Coincidentally, this rate is 
of the same order of magnitude as liberal estimates of the maximum methane 

Figure 1. Conceptual diagram illustrating possible methane sources and release mechanisms in the martian subsurface. 
Features not to scale; spatial relationship between methane sources is designed to show that living biotic sources cannot be 
shallow. All sources shown, except regolith desorption, can be located at greater depths than those shown.

Case

ϕm km kf

[–] [m 2] [m 2]

Base case 0.35 1 × 10 −14 8.3 × 10 −10

High km 0.35 1 × 10 −12 8.3 × 10 −10

Low km 0.35 1 × 10 −17 8.3 × 10 −10

Low ϕm 0.10 1 × 10 −14 8.3 × 10 −10

Narrow b 0.35 1 × 10 −14 8.3 × 10 −12

Note. ϕm is the matrix porosity (unitless), and km and kf are the matrix and 
fracture permeability (m 2), respectively. Fracture porosity ϕf is assumed 
1.0. The fracture permeability kf in the table is upscaled in the model to the 
numerical mesh dimensions following the procedure described in Section 4.2 
in Supporting Information S1.

Table 1 
Geologic Properties of the Subsurface Model

https://pds.nasa.gov/
https://pds.nasa.gov/
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production rate by serpentinization reactions on Mars (Stevens et al., 2015). 
Our model thus assumes direct source rock to seepage pathway similar to 
that observed in Etiope et al. (2013), rather than a source-reservoir-seepage 
system.

Before beginning the transport simulation, we initialize the flow model using 
a constant surface pressure for 10 8 years to create an air-static equilibrium 
gradient throughout the subsurface. We used this air-static equilibrium as the 
initial state for the transport simulations. The MSL pressure record (2,713 
sols long at the time of simulation) is extended by cyclically repeating the 
record to provide the surface pressure boundary condition. Transport simu-
lations are run for 60,000 sols, by which point the system in each case has 
reached a cyclical quasi-steady-state, as determined by a linear trend in 
cumulative surface mass outflow. The domain is initially populated with a 
uniform concentration of methane gas (C0 = 9.6 × 10 −5 mol 𝐴𝐴 kg−1

𝑎𝑎𝑎𝑎𝑎𝑎
 ) to allow 

the subsurface to more efficiently reach a quasi-equilibrium by pumping out 
excess methane from the system in the early stages of the simulation. After 
we achieve cyclical quasi-steady-state transport conditions, we can calculate 
the time-averaged surface flux for key periods (e.g., the large peak in north-
ern summer and small peak in northern winter).

2.2. Geologic Framework

We assigned the background rock matrix in the base case a porosity (ϕm) 
of 35%, which is in the range estimated by Lewis et  al.  (2019) based on 
consideration of the low bedrock density at Gale crater. We set the back-
ground rock permeability (km) to 1  ×  10 −14  m 2 (0.01 Darcies). This is 
slightly more permeable than the conservative 3  ×  10 −15  m 2 prescribed 
by previous research modeling hydrothermal circulation on Mars (Lyons 
et  al.,  2005), which is appropriate as our domain is much shallower than 
the domain considered there (∼10 km), and permeability tends to decrease 
with depth (Manning & Ingebritsen, 1999). We assumed a fracture porosity 
(ϕf) of 100% (i.e., open fractures); we calculated fracture permeability (kf) 
as kf = b 2/12 = 8.3 × 10 −10 m 2 assuming a fracture aperture (b) of 0.1 mm 
for all fractures in the domain. Rock properties are presented in Table  1. 
Other scenarios with the same fracture network topology (described below 
in Section 2.3) were tested by varying the rock matrix properties (Table 1). 
We also ran several alternative simulations to the base case, including: simu-
lations with shallower methane source depths (150 and 50  m), a simula-

tion having narrower fractures (aperture b = 0.01 mm) and wider fractures (b = 1 mm), as well as cases with, 
respectively, a much higher methane production rate (6.7 × 10 −12 mol CH4 m −3  s −1) in the source zone and 
depth-dependent fracture density.

2.3. Numerical Mesh

We set up the model in FEHM as a two-dimensional planar domain 50 m wide by 200 m deep. Mesh discre-
tization is uniform in the x and y directions such that Δx  =  Δy  =  1  m. We randomly generated orthogonal 
discrete fractures using the 2-D Lévy-Lee algorithm (Clemo & Smith, 1997), a fractal-based fracture model first 
presented in Geier et al. (1988) and described in detail in Section 4.1 in Supporting Information S1. The Lévy-Lee 
algorithm generates a fracture network with a continuum of scales for both fracture length and spacing between 
fractures (Figure 2). The Lévy-Lee algorithm is found to accurately describe fracture networks in a range of 
geological and tectonic settings. Although the model can be constructed with non-orthogonal and inclined frac-
tures, the overall behavior is dominated by the connectivity among highly permeable fractures rather than their 
orientation; for this reason, we employed a relatively simple domain with orthogonal fractures. We then mapped 
the fracture network onto a uniform grid, which essentially embeds the fractures in the rock matrix via upscaling 

Figure 2. Vertical cross-section of the fracture network generated using the 
Lévy-Lee algorithm. Fractures are shown in red, with rock matrix in blue 
(B.C. = boundary condition). A methane source located in the methane 
production zone produces methane at a rate of 6.7 × 10 −16 mol CH4 m −3 s −1.
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of properties (Section 4.2 in Supporting Information S1), allowing two-way coupling of air and methane fluxes 
across the fracture-matrix interface.

We generated the fracture network to be somewhat representative of Mars' subsurface (see Section 4.3 in Support-
ing Information S1). Because the subsurface on Mars is so poorly characterized, we estimate the fracture density 
(i.e., the ratio of fracture volume to bulk rock volume) based on rover photographs depicting surface expression 
of fracture networks at Gale crater and extrapolated their distribution into the subsurface. This approximation 
likely represents an upper limit of fracture density since lithostatic pressures tend to close fractures with depth.

3. Results and Discussion
Our results (Figure 3a, Table 2) illustrate the ability of barometric pumping to induce significant methane trans-
port to the martian atmosphere from considerably deeper sources than prior subsurface transport studies. Recent 
work by Viúdez-Moreiras et al. (2020) determined using a porous-media model that advective transport would 

Figure 3. (a) Base case surface methane flux (black), with barometric pressure (gray) driving the subsurface transport model. 
Pressure records were collected by Mars Science Laboratory (MSL) and are repeated in the simulations cyclically. The plot 
shows the surface fluxes for a 2,713-sol period when the model had reached a cyclical pseudo-steady state. Annotations with 
curly braces indicate time averaged fluxes for the 334-sol spans shown, each centered on the local flux maximum within that 
period. Colored zones indicate Mars seasons for the northern hemisphere. Inset figure highlights the diurnal and semi-diurnal 
variations in surface flux. (b) Base case simulated surface methane flux (black) plotted against solar longitude (Ls) compared 
to atmospheric methane abundances at Gale crater (red circles), which were collected by the Curiosity TLS-SAM instrument 
suite (Webster et al., 2018). Error bars show ±1 standard error of the mean.
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be limited to the first few meters of depth. In contrast, atmospheric pressure fluctuations can produce significant 
advective flow at great depths within a network of connected fractures. Our model provides a physical representa-
tion of the upward ratcheting mechanism described above, and it explicitly represents both a fracture network and 
rock matrix blocks with highly contrasting permeabilities. With this geologic framework, the barometric pump-
ing mechanism is able to produce significant surface seepage from depths of 200 m (Figures 3a and 3b), which 
is our estimated likely minimum depth of potentially living methanogenic microbes (Section 1 in Supporting 
Information S1).

Our simulations reveal strong periodicity associated with methane seepage driven by seasonal barometric pres-
sure fluctuations on Mars (Figures 3a and 3b), which closely resembles the intermittent seepage pattern described 
for terrestrial emissions in Etiope and Oehler  (2019, Figure 1b). In our results, the highest-intensity methane 
spikes occur in northern summer/southern winter (solar longitude, Ls, 90–180°; Gale crater at 5.4°S, 137.4°E is 
near the equator). This pattern is consistent with recent work that found strong seasonal cycles of background 
methane levels at Gale crater (Figure 3b) based on measurements of atmospheric methane abundance collected 
by the Curiosity Tunable Laser Spectrometer (TLS) of the Sample Analysis at Mars (SAM) instrument suite 
(Webster et al., 2018). Additionally, Webster et al. (2018) observed a weak correlation between lower maximum 
pressure-per-sol and higher methane concentrations (Webster et al., 2018), which may also be explained by the 
barometric-pumping mechanism. We found a linear correlation (Pearson correlation coefficient = 0.62; Figure 
S9 in Supporting Information S1) between simulated surface flux and the atmospheric methane abundance meas-
urements from Curiosity (Webster et al., 2018), which we discuss in Section 5.2 in Supporting Information S1. 
This relationship is expected because increased surface methane flux will increase levels of atmospheric methane 
under simple mixing conditions, although wind, atmospheric mixing rates, planetary boundary layer height, 
photochemical destruction, and other factors lead to deviations from strict proportionality.

Case

Time-averaged flux

Figures

10 −9 [kg⋅km −2⋅s −1]

Northern summer Northern winter

Window duration [sols] Window duration [sols]

58 117 334 58 117 334

Base case 1.80 1.30 0.63 0.17 0.16 0.07  3a

High matrix permeability (km) 3.02 2.66 1.39 0.66 0.54 0.29 S10

Low matrix permeability (km) 0.83 0.74 0.41 0.12 0.11 0.06 S11

Low matrix porosity (ϕm) 0.05 0.04 0.02 0.006 0.005 0.002 S12

Shallow source (50 m) 5.02 3.71 1.84 0.47 0.43 0.18 S13

Shallow source (150 m) 1.83 1.32 0.64 0.18 0.17 0.07 S14

Narrow fractures (b = 0.01 mm) 0.24 0.18 0.07 0.001 0.0009 0.0004 S15

Wide fractures (b = 1 mm) 413.0 364.8 188.2 85.81 61.96 30.31 S16

High CH4 production rate 890.2 644.7 314.1 84.82 79.58 34.52 S17

Depth-depend. fract. density 1.99 1.44 0.69 0.19 0.18 0.08 S18

Moores, Gough et al. (2019) 8.40 a

Moores, King, et al. (2019) 1.69 b

Moores, King, et al. (2019) 1.13 c 0.43 c

Moores, King, et al. (2019) 2.83 d 0.78 d

Formisano et al. (2004) 0.028 e

 aUpper limit assuming seepage restricted to Gale crater.  bAverage accounting for diurnal atmospheric mixing 
variations.  cAnnual maximum/minimum for a completely stably stratified atmospheric model.  dAnnual maximum/minimum 
for a well-mixed near-surface atmospheric model.  eAssuming continuous, uniform planet-wide seepage.

Table 2 
Time-Averaged Fluxes for Different Time Windows Centered on the Large Northern Summer High-Methane Period and 
Smaller Northern Winter High-Methane Period
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In our base case simulation (Figure 3a), we calculate time-averaged fluxes for two characteristic high-methane 
periods—each spanning 334 sols (0.5 martian years, and nearly 1 Earth year). In a given Mars year (668 sols, Ls 
0–360°), the barometric pumping mechanism driven by martian atmospheric pressures produces one large peak 
of methane flux (time-averaged flux of order 6 × 10 −10 kg km −2 s −1) occurring in northern summer, and one small 
peak of methane flux (of order 7 × 10 −11 kg km −2 s −1) occurring in northern winter. Maximum diurnal methane 
spikes can be several orders of magnitude greater (∼0.2–1.8 × 10 −6 kg km −2  s −1; Figure 3a). Both the large 
and small methane flux peaks coincide with the troughs of downward-trending atmospheric pressures, which 
makes sense intuitively, as these conditions create a favorable subsurface pressure gradient for promoting upward 
advective transport. We present time-averaged fluxes for all simulations in Table 2, with multiple time window 
durations for interpreting shorter-term seepage events.

Methane fluxes calculated in our simulations are comparable to the range of previous flux estimates based on 
observed atmospheric methane abundances on Mars (Table 2; Figures 3a, S10, S11, S12 in Supporting Informa-
tion S1). Estimates of methane surface flux on Mars range from 2 × 10 −11 kg km −2 s −1 (assuming planet-wide, 
uniform seepage; Formisano et al., 2004) to 8.4 × 10 −9 kg km −2 s −1, which is based on an upper-limit estimate of 
methane microseepage at Gale crater (Moores, Gough et al., 2019). The most current estimate of surface fluxes 
at Gale crater is provided by constraining a microseepage-fed adsorptive-diffusive process with SAM-TLS and 
ExoMars Trace Gas Orbiter measurements (Moores, King et al., 2019). By also taking into account diurnal atmos-
pheric mixing variations, the surface methane flux at Gale crater was determined to be 1.5 × 10 −10 kg m −2 sol −1 
(1.69 × 10 −9 kg km −2 s −1), which would require an emission area of 2.7 × 10 4 km 2 (approximately 143% of the 
area of Gale crater itself) to supply the annual planet-wide atmospheric methane budget (∼4.0 kg/sol, or about 2.7 
tonnes per martian year) (Korablev et al., 2019). Depending on the atmospheric model end-members used in that 
study (Table 2, superscripts b–d), flux was found to vary over the martian year by a factor of 3.0–3.6 (Moores, 
King et al., 2019). In comparison, average surface flux for our base case simulation over the course of one martian 
year (668 sols) is approximately 3 × 10 −10 kg km −2  s −1, which would require emissions from approximately 
1.3 × 10 5 km 2 (∼8 times the area of Gale crater, or ∼0.1% the total surface area of Mars) to supply the planet-wide 
methane budget. Base case flux varies over a martian year by a factor of 9 when comparing the large and small 
high-methane periods of our base case simulation. The actual magnitude of flux is controlled by a number of 
factors. For example, greater source strength (Figure S17 in Supporting Information S1), shallower source depth 
(Figure S13 in Supporting Information S1), or elevated subsurface pressures caused by geologic stresses would 
all promote greater methane fluxes. Conversely, deeper source depth or narrower fracture apertures (Figure S15 
in Supporting Information S1) would result in reduced methane fluxes.

We performed an analogous base case simulation for a source depth of 50 m (Figure S13 in Supporting Infor-
mation S1) which exhibited roughly three times the time-averaged flux compared to the base case. Better under-
standing of source terms and characterization of Mars' subsurface would greatly improve such calculations. 
Furthermore, transport is likely affected by additional physico-chemical processes, such as adsorption (Moores, 
Gough, et al., 2019; Moores, King et al., 2019) to mineral grains in the shallow regolith, which would also affect 
the magnitude and timing of surface release of methane.

4. Conclusions
We have proposed that barometric pumping in a fractured subsurface provides a mechanism for venting methane 
from deep sources to the atmosphere on Mars. Our flow and transport simulations in fractured rock demonstrate 
that barometric pumping is capable of producing significant surface fluxes of methane (Figure 3a), even when the 
methane source is at considerable depth (200 m). A key factor is the relatively high fracture density in the lower 
gravity environment of Mars (Lewis et al., 2019). Our simulations confirm the clear connection between atmos-
pheric pressures and surface methane flux (Figures 3a and 3b; S9 in Supporting Information S1) hypothesized in 
previous works (Etiope & Oehler, 2019). Driven by atmospheric pressure fluctuations acquired by the Curiosity 
REMS barometric record, the overall surface seepage pattern at Gale crater is highly seasonal, with local flux 
maxima generally occurring during times of low atmospheric pressure. It is noteworthy that the seasonality of 
fluxes generated in our model (Figure 3b) is reasonably consistent (Figure S9 in Supporting Information S1) with 
that of atmospheric methane abundance variations found in previous research (Webster et al., 2018). The overall 
magnitude of fluxes in our model (Table 2) is within the range of previously reported values for surface methane 
seepage (Formisano et al., 2004; Moores, Gough, et al., 2019; Moores, King et al., 2019; Mumma et al., 2009). 
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Relatively large average flux during high-methane periods in our simulations supports a conceptual model of 
short-duration, localized surface releases rather than a homogeneous (planet-wide), constant release of methane 
(Table 2).

To our knowledge, this analysis is the first to make an explicit mechanistic connection between deep subsurface 
methane stores and the observed seasonality of atmospheric methane concentrations on Mars. Emission mech-
anisms proposed to date (Yung et al., 2018) have had difficulties explaining the methane abundance variations 
detected by MSL (Webster et al., 2018; Yung et al., 2018), although one study was largely able to match methane 
abundance seasonality with a model of methane transport by diffusion and adsorption from a relatively shallow 
(<30 m) source (Moores, Gough, et al., 2019). We have demonstrated that barometric pumping transport in a 
fractured subsurface can reconcile the methane abundance variations detected by MSL with emissions from 
subsurface reservoirs by regulating emissions via meteorological conditions, rather than requiring a time-varying 
methane production or release mechanism to explain the observed episodicity. Until now, the inability to identify 
and study a mechanism for significant, rapid transport of methane from depths >10–30 m on Mars has led to 
conclusions that periodic rapid spikes in atmospheric methane can only be tied to transport from very shallow 
accumulations (Chastain & Chevrier,  2007; Hu et  al.,  2016; Max et  al.,  2013; Moores, Gough, et  al.,  2019; 
Moores, King et  al.,  2019), which implicitly ruled out living microbial methanogens as a source of methane 
on Mars (Section 1 in Supporting Information S1). Our results confirm the viability of rapid, efficient periodic 
methane transport from depths that are hospitable to potentially living microbial methanogens, supporting the 
possibility that Mars methane may be produced by extant microorganisms.

Data Availability Statement
Pressure data described in the paper are further described in the supplementary materials and were acquired from 
NASA's Planetary Data System (PDS) at the following address: https://atmos.nmsu.edu/PDS/data/mslrem_1001/
DATA/. PDS data products from the Mars Science Laboratory (MSL) Rover Environmental Monitoring Station 
(REMS) were used for the analysis in this paper. The MSL REMS Models Reduced Data Record (MODRDR) 
provided the atmospheric pressure measurements for our simulations (Gómez-Elvira, 2019a). The MSL REMS 
Ancillary Data Record (ADR) provided the rover elevations we used in our elevation corrections to pressure 
measurements (Gómez-Elvira, 2019b). Figures were made with Matplotlib version 3.2.2 (Hunter, 2007) avail-
able under the Matplotlib license at https://matplotlib.org/. The FEHM software (Zyvoloski, 2007; Zyvoloski 
et al., 2017) version 3.4.0 (https://fehm.lanl.gov) associated with this manuscript for the simulation of gas flow 
and transport is published on GitHub: https://github.com/lanl/FEHM/tree/v3.4.0.
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